

MultHyFuel Launch Event

29/04/2021

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under Grant Agreement No 101006794. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe research.

All participant microphones are muted to keep the audio clear.

Please use Q&A box if you have any questions to the speakers.

This meeting will be recorded. The recording and slides will be available in the MultHyFuel's website https://multhyfuel.eu/.

Should you need access to them before they go live, please send an e-mail to info@multhyfuel.eu

Time		Subject	Speaker
14:00-14:10	F	CH JU contribution	Enrique Giron (FCH JU)
14:10-14:20	Intro	duction to MultHyFuel	Alexandru Floristean (HE)
14:20-14:25	St	ate of the art review	Alexandru Floristean (HE)
14:25-14:35	From the risk asse	Sebastien Quesnel (ENGIE)	
14:35-14:45	Experimentation	Leakages, clouds and ignition	Christophe Proust (INERIS)
14:45-14:55	Experimentation	Fire and Explosion	David Torrado (HSE)
14:55-15:05	Key st	akeholder engagement	Joana Fonseca (HE)
15:05-15:10	Dis	Nick Hart (ITM Power)	
15:10-15:30		Q&A	

| **FUEL CELLS AND HYDROGEN** | JOINT UNDERTAKING

MultHyFuel

Enrique Girón

Launch event 29/04/2021

Strong public-private partnership with a focused objective

EU Institutional Public-Private Partnership (IPPP)

To implement an *optimal research and innovation programme* to bring FCH technologies to the point of market readiness by 2020

FCH 2 JU Objectives

Market readiness of a portfolio of clean, efficient and affordable solutions for our energy and transport systems

Clean Transport

Reduce fuel cell system costs for transport applications

Green hydrogen

production

Increase efficiency and reduce costs of hydrogen production, mainly from water electrolysis and renewables Heat & electricity production Increase fuel cell efficiency and lifetime

H₂ storage for grid balancing

Demonstrate on a largescale hydrogen's capacity to harness power from renewables and support its integration into the energy system

Minimal use of critical raw materials Reduce platinum loading

FCH 2 JU Programme structure

ENERGY

- Hydrogen production and distribution
- Hydrogen storage for renewable energy integration
- Fuel cells for power & combined heat & power generation

CROSS-CUTTING

(e.g. standards, safety, education, sonsumer awareness, ...)

 \searrow

TRANSPORT

- Road vehicles
- Non-road vehicles and machinery
- Refuelling infrastructure
- Maritime, rail and aviation applications

FCH 2 JU: Total Budget: 1,3 bn € EC contribution: 646 m €

FCH 2 JU programme implementation

Energy

- Hydrogen production and distribution
- Hydrogen storage for renewable energy integration
- Fuel cells for power & combined heat & power generation

Transport

<u>-</u>-----

 $\supset \subset$

- Road vehicles
- Non-road vehicles and machinery
- Refuelling infrastructure
- Maritime rail and aviation applications

Cross-cutting

• E.g. standards, safety, education, consumer awareness ...

Similar leverage of other sources of funding: 1 b€

| **FUEL CELLS AND HYDROGEN** | JOINT UNDERTAKING

Enrique Girón

For further information

www.fch.europa.eu

Time		Speaker	
14:00-14:10	F	CH JU contribution	Enrique Giron (FCH 2 JU)
14:10-14:20	Intro	duction to MultHyFuel	Alexandru Floristean (HE)
14:20-14:25	St	ate of the art review	Alexandru Floristean (HE)
14:25-14:35	From the risk asse	essment to the general best practice guidelines	Sebastien Quesnel (ENGIE)
14:35-14:45	Experimentation	Leakages, clouds and ignition	Christophe Proust (INERIS)
14:45-14:55	Experimentation	Fire and Explosion	David Torrado (HSE)
14:55-15:05	Key st	akeholder engagement	Joana Fonseca (HE)
15:05-15:10	Dis	semination of results	Nick Hart (ITM Power)
15:10-15:30		Q&A	

BACKGROUND AND CONTEXT

With increasing demand for FCEV, Hydrogen Refueling Stations are required to be upscaled and co-located alonsige conventional fuels in commercial and residential areas.

The problem:

- In some countries, specific regulations for HRS don't exist
- Co-location of hydrogen with conventional fuels is not seen in most safety regulations
- Different approaches are taken by different countries

"(...) lack of guidelines and instructions for local authorities can cause **delays** and **extra costs** and may lead to **divergent interpretations** from case-to-case, further complicating the obligations of HRS operators."

2018, https://www.hylaw.eu/

MULTHYFUEL: GOALS

Goal

Defining **commonly applicable, effective, and evidence-based guidelines** to facilitate the construction of HRS in multi-fuel refuelling stations.

- Identification of relevant gaps in the current legal and administrative framework;
- Acquisition of experimental data from engineering research on hydrogen leaks, their effects and the effects of mitigation measures;
- Actively engage a community of stakeholders in the overall process, from gap identification to review and validation of the solutions proposed, to facilitate evidence-based policy-making;
- Successfully disseminate the project's results.

WORKPLAN

WP1

State of the art review

Preliminary extensive diagnosis of the existing rules, standards and best practices in the domain.

WP2 & WP3

Analysis and experimentation New data acquisition through

practical experimentation and analysis of information collected. WP3

Synthesis of results Generate best practice guidance for national implementation of evidence-based policies.

WP4

Engagement plan

Actively engage a community of stakeholders throughout the process for validation of results and gap identification.

WP5

Communication and dissemination

Maximise project's impact through adequate dissemination of results.

maîtriser le risque pour un développement durable

CALENDAR

					2	021	L										20)22											20)23					
1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
			D3.1																																
			D3.2	WS1																															
								D1.2																											
											WS2					D2.2											WS3	D2.4							
																													D3.6	WS4					
																																		D3.7	
																																		D3.8	D4.6

- D3.1 State of the art technologies
- D3.2 Benchmarking of risk assessment methodology applied to refueling stations
- D1.2 Permitting requirements and risk assessment methodologies for HRS in the EU
- D2.2 Assessment of dispersion for high pressure H2
- D2.4 Fire and explosion hazard assessment summary report
- D3.6 Layout recommendations for multi-fuel stations (separation distances/hazardous areas classification)
- D3.7 Best practice guidelines for multi-fuel stations
- D3.8 Set of recommendations dfor standard
- D4.6 Signed endorsement of key stakeholders to strive for the adoption of common rules

Time		Speaker	
14:00-14:10	F	CH JU contribution	Enrique Giron (FCH JU)
14:10-14:20	Intro	duction to MultHyFuel	Alexandru Floristean (HE)
14:20-14:25	St	ate of the art review	Alexandru Floristean (HE)
14:25-14:35	From the risk asse	Sebastien Quesnel (ENGIE)	
14:35-14:45	Experimentation	Leakages, clouds and ignition	Christophe Proust (INERIS)
14:45-14:55	Experimentation	Fire and Explosion	David Torrado (HSE)
14:55-15:05	Key st	akeholder engagement	Joana Fonseca (HE)
15:05-15:10	Dis	Nick Hart (ITM Power)	
15:10-15:30		Q&A	

WP1 – STATE OF THE ART REVIEW

Preliminary extensive diagnosis of the existing rules, standards and best practices in the domain.

Goal

- Collect specific information on requirements, rules, conditions, standards applicable at national level in 14 European countries (Network of National Experts);
- Comparative assessment and gap analysis.

Scope of research

- Existing permitting requirements for HRS;
- Risk Assessment regulations/methodologies;
- Safety or separation distances;
- Intervals and content of equipment maintenance.

COUNTRY ORGANIZATION **EU COVERAGE & REPRESENTATIVENES** AT Austrian Energy Agency ΒE WaterstofNet vzw ΒG Bulgarian Hydrogen, Fuel Cell and Energy Storage Association VTT Technical Research Centre of Finland LTD FI FR France Hydrogéne DE ZSW Hungarian Hydrogen & Fuel Cell Association ΗU Italian National Agency for new technologies, IT energy and sustainable economic development and H2 Italy NL NEN **NEXUS** Consultants PL ES Aragon Hydrogen Foundation SE Hydrogen Sweden ITM Power UK NO Greenstat

Network of National Experts

Time		Speaker	
14:00-14:10	F	CH JU contribution	Enrique Giron (FCH 2 JU)
14:10-14:20	Intro	duction to MultHyFuel	Alexandru Floristean (HE)
14:20-14:25	St	Alexandru Floristean (HE)	
14:25-14:35	From the risk asse	Sebastien Quesnel (ENGIE)	
14:35-14:45	Experimentation	Leakages, clouds and ignition	Christophe Proust (INERIS)
14:45-14:55	Experimentation	Fire and Explosion	David Torrado (HSE)
14:55-15:05	Key st	Joana Fonseca (HE)	
15:05-15:10	Dis	Nick Hart (ITM Power)	
15:10-15:30		Q&A	

OBJECTIVES

- to develop best practice guidelines that can be used as a common approach to risk assessments (e.g. suggested methods/tools for risk modelling, Atex, safety distances)
- to determine recommendations for the safe implementation of H2 dispensers in multifuel stations (separation distances, safety barriers) to be used in standards and regulation relative to HRS

	Consequence										
Likelihood	Insignificant	Minor	Moderate	Major	Severe						
Almost Certain	Medium	High	High	Extreme	Extreme						
Likely	Medium	Medium	High	Extreme	Extrome						
Possible	Medium	Medium	High	High	Externe						
Unlikely	Low	Medium	Medium	High	High						
Rare	Low	Low	Medium	High	High						

METHODOLOGY

METHODOLOGY

- State of the art about **refuelling station technologies** to define 3 case study
- Benchmark of risk assessments on H2 & conventional stations to recommend tools/methods for the following tasks
- Preliminary and detailled **risk assessments** on the 3 case study
- Identification of critical scenarios and safety barriers to be studied in WP2 (experimentations)
- Review of critical scenarios with inputs from WP2 to refined critical scenarios in order to define separation, safety distances, hazardous areas
- Writing best practices guidelines for multi fuels stations based on findings of WP3

METHODOLOGY : TASKS 3.1/2 STATE OF THE ART

3.1 State of the art - technology

- Benchmarking oh HRS configurations
- Output : three case study to have relevant <u>example systems for the</u> <u>following risk analysis tasks 3.3/3.4</u>
- Presentation to HRS Operators and HRS Manufacturers for validation

	Consequence									
Likelihood	Insignificant	Minor	Moderate	Major	Severe					
Almost Certain	Medium	High	High	Extreme	Extreme					
Likely	Medium	Medium	High	Extreme	Extreme					
Possible	Medium	Medium	High	High	Extreme					
Unlikely	Low	Medium	Medium	High	High					
Rare	Low	Low	Medium	High	High					

3.2 State of the art – risk assessment

- Benchmarking of literature review and partners inputs on HRS and conventional stations
- Output : select risk assessment methods and tools for risk assessment tasks

METHODOLOGY : TASKS 3.3/4 RISK ASSESSMENTS

- 3.3 Preliminary risk assessment
- Risk assessments on the 3 case study
- Brainstorming method in working group with partners experts
- Output : potential critical scenarios to be studied in details ------→

3.4 - Detailed risk assessment

- Likelihood and severity evaluation for the potential critical scenarios with database and modeling tools (fire, explosion)
- Output : list of scenarios with their severity and likelihood

METHODOLOGY : TASKS 3.5/6 CRITICAL SCENARIOS

- 3.5 Identification of critical scenarios
- Definition of risk criteria acceptance
- identification of critical scenarios and related equipments/safety barriers with gap of knowledge
- Output : list of equipment/safety
 barriers to be experimented in WP2

3.6 - Risk assessment review of critical scenarios and hazardous areas

- WP2 results helps to refine the previous critical scenarios (3.4) -> review
- Calculations of safety distances for dispensers, hazardous area for H2 dispensers
- Outputs: separation distances & hazardous area classification

METHODOLOGY : TASKS 3.7 BEST PRACTICES

- Recommandations of **safety barriers** for HRS in a multi-fuel context.
- Layout recommendations for HRS dispenser
- Define **hazardous area** around H2 dispenser
- Provide references to new knowledge that has been generated by the project in the context of how it can be used for risk assessment and safe design of multi-fuel facilities
- Provide evidence-based recommendations for future standards and operation instructions, extracted from the good practice guidelines

Output : Best practice guidelines for multi fuels stations and set of recommendations for informing future standards.

WP3 MAIN OUTPUTS

- **Recommendations on separation distances and safety barriers** for the installation of HRS in existing conventional fuels.
- Recommendations to be used for future standard establishment related to HRS/multi fuels station (i.e ISO)

Time		Speaker	
14:00-14:10	F	CH JU contribution	Enrique Giron (FCH 2 JU)
14:10-14:20	Intro	duction to MultHyFuel	Alexandru Floristean (HE)
14:20-14:25	Sta	ate of the art review	Alexandru Floristean (HE)
14:25-14:35	From the risk asse	Sebastien Quesnel (ENGIE)	
14:35-14:45	Experimentation	Leakages, clouds and ignition	Christophe Proust (INERIS)
14:45-14:55	Experimentation	Fire and Explosion	David Torrado (HSE)
14:55-15:05	Key st	akeholder engagement	Joana Fonseca (HE)
15:05-15:10	Dis	semination of results	Nick Hart (ITM Power)
15:10-15:30		Q&A	

WP2 - EXPERIMENTATION

- Filling the gaps to permit the risk assessment exercise and design mitigation for critical scenarios:
 - What are the failure frequencies (given technologies and usage) ?
 - What are the leakage flowrates for those failure modes?
 - What are the cloud characteristics (complex conditions)
 - In which condition will the cloud ignite?
 - What are the explosion and fire consequences ?
 - What are the real performances of the sagety barriers ?

TASK 2.1.1 – LEAKAGE CHARACTERISTICS

TASK 2.1.2 – DISPERSION CHARACTERISTICS

Objectives:

- Numerically study realistic release scenarios using CFD tools
- Focus on scenarios for which existing *"engineering tools"* are not applicable
- Use model outputs to provide insight into dispersion behaviour and the extent of hazardous areas

Inputs/Dependencies:

- Realistic release scenarios to be defined as part of Task 3.3 *Preliminary Risk Assessment*
- Source term characteristics to be identified as part of Task 2.1.1 *Leakage Characterisation*

Outputs:

Deliverable D2.2 (report) – Assessment of dispersion for high-pressure H₂

TASK 2.1.2 – DISPERSION CHARACTERISTICS

Methodology:

Step 1 – Model validation

Validation Datasets:

- Identify experimental datasets for model validation
- Agree subset of cases to be used in validation exercise with task partners

Validate CFD Models:

- All task partners to undertake model validation simulations with selected CFD models
- Overall evaluation of model performance

<u>Step 2 – Realistic release</u> <u>scenarios</u>

Realistic Releases:

 Identify realistic release configurations in collaboration with Task 3.3

Simulations of scenarios

- Divide scenarios amongst task partners, 2/3 cases per partner
- Simulate the identified realistic release cases to produce outputs needed for task deliverable

<u>Step 3 – Production of written</u> <u>deliverable</u>

Produce D2.2

- To be led by HSE
- D2.2 to include summary of models used, model validation exercise and quantification of model performance
- For realistic release cases, model outputs of flammable cloud extent and time spent within flammable range to be produced and summarised in report

TASK 2.1.3 – IGNITION PROBABILITIES

• It would certainly be difficult to market H2 dispensers if ignition might occur for any kind of leak. Fortunately, experience shows that ignition of hydrogen leaks is not, by far, systematic.

Input from task 3.3 and 2.1.2

Theoretical investigation:

- 1. Mechanisms/thresholds
- 2. Presence of the ATEX

Ignition likelihood as function of scenario Confrontation to field data (to deliverable D2.3)

TASK 2.1.4 – EFFICIENCY OF SAFETY BARRIERS

- For critical scenarios, especially those with the largest consequences, safety barriers (breakaway, hose rupture detection with H2 shutdown, abnormal pressure detection safety loop, ...) might be required and will be defined in WP3.
- Suggested safety barriers to be tested :
 - Passive breakaway systems
 - Excess flow valves
 - Active detection via pressure drop, excess flow
 - Possibly active detection + shut off valve

Selection of 4 safety barriers to be fully tested (from deliverable 3.5) and explosion and fire (measured) consequences (task 2.2.2)

Testing in realistic and measuring the performance (repeatability and residual consequences)

Time		Speaker	
14:00-14:10	F ⁱ	CH JU contribution	Enrique Giron (FCH 2 JU)
14:10-14:20	Intro	duction to MultHyFuel	Alexandru Floristean (HE)
14:20-14:25	St	ate of the art review	Alexandru Floristean (HE)
14:25-14:35	From the risk asse	Sebastien Quesnel (ENGIE)	
14:35-14:45	Experimentation	Leakages, clouds and ignition	Christophe Proust (INERIS)
14:45-14:55	Experimentation	Fire and Explosion	David Torrado (HSE)
14:55-15:05	Key st	akeholder engagement	Joana Fonseca (HE)
15:05-15:10	Dis	semination of results	Nick Hart (ITM Power)
15:10-15:30		Q&A	

TASK 2.2 - FIRE AND EXPLOSION HAZARDS

The Fire and Explosion Hazards task aims to experimentally study (in real conditions) the consequences of a set of critical failure events on the hydrogen dispenser and surrounding fuelling station.

General Objectives:

- 1. Design and perform practical research to address gaps in the current understanding of Hydrogen Refuelling Station safety needs in a Multi-Fuel environment.
- 2. Support the Risk Assessment WP3 with experimental data on critical scenarios and safety requirements

Zoning Threshold (Task 2.2.1)

Determine if there is an appropriate upper limit on the size of a leak based on a Minimum Harm Criteria and if Negligible Extent could be applicable <u>Domino effect arising from</u> <u>faults H₂ dispensers (Task 2.2.2)</u>

Determine how releases of H₂ within and around the dispenser may cause events to escalate to the surrounding infrastructure. Determine consequences associated to critical scenarios <u>Vulnerability of H₂ dispensers to</u> <u>incidents from adjacent fuels</u> <u>(Task 2.2.3)</u>

Improve understanding on how vulnerable H₂ dispensers are to incidents from existing co-located hydrocarbons installations

TASK 2.2.1 ZONING THRESHOLD

What would the safety distances be for various minimum harm criteria ?

MultHvFuel

TASK 2.2.2 – DOMINO EFFECTS H₂ DISPENSER \rightarrow FORECOURT

Methodology: To build an experimental rig based on:

Hydrogen Refuelling Station

Hydrogen Dispenser – Agree on replica design. It may include:

- Pipework + valves (MAWP)
- Pressure relief (MAWP)
- Hose breakaway, hose, nozzle
- Instrumentation (Temp, Pressure) Dispenser Supply
- High pressure storage vessel/s
- HP compressor
- Remote operation
- Pressure and temp monitoring

High pressure compression and storage

Generic forecourt arrangement

Forecourt layout – Agree with partners. It may include:

- Other fuel dispenser/s
- Vehicle/s (congestion)
- Support structures
- Vent stack/s

Instrumentation:

IR camera, high speed pressure/temp sensors, heat flux measurements, gas concentration

<u>Hydrogen Dispenser</u>

Testing scenarios

Critical scenarios – Defined during task 3.5 (WP3). It may include:

- Directed jet propagating to adjacent objects
- Internal explosion propagating to an external cloud
- Unignited test of small/large bore leaks within dispenser
- H₂ leak inside dispenser External ignition
- Hose breakaway

TASK 2.2.3 – VULNERABILITY OF H_2 DISPENSER FORECOURT $\rightarrow H_2$ DISPENSER

Explosion scenarios

Hydrogen Dispenser – Pressurised to operating conditions with H₂

Scenarios - To be defined in task 3.5

- To be carried out in congested environments (e.g. under arrays of cars)
- LPG and petrol sprays to investigate the thermal and mechanical effects on dispensers

Fire scenarios

Hydrogen Dispenser – Pressurised to operating conditions with H₂

Scenarios - To be defined in task 3.5

- Explore H₂ vulnerability when exposed to controlled fire sources (petrol/diesel pool fires, LPG jet): may be used as a function of intensity (including full fire engulfment) and time
- Any contribution of H₂ to total risk will be determined

Potential mitigation measures will be identified (in consultation with all participants). It may be appropriate to test some of these e.g. passive fire protection

CONTRIBUTION

- Experimental data for the review of the risk assessment WP3– fill knowledge gaps and provide data for critical scenarios
- Identification of potential mitigation measures

MultHvFuel

TASK 2.2 - FIRE AND EXPLOSION HAZARDS (TIMELINE)

Time		Subject	Speaker
14:00-14:10	F ⁱ	CH JU contribution	Enrique Giron (FCH 2 JU)
14:10-14:20	Intro	duction to MultHyFuel	Alexandru Floristean (HE)
14:20-14:25	St	ate of the art review	Alexandru Floristean (HE)
14:25-14:35	From the risk asse	Sebastien Quesnel (ENGIE)	
14:35-14:45	Exporimontation	Leakages, clouds and ignition	Christophe Proust (INERIS)
14:45-14:55	Experimentation	Fire and Explosion	David Torrado (HSE)
14:55-15:05	Key st	akeholder engagement	Joana Fonseca (HE)
15:05-15:10	Dis	semination of results	Nick Hart (ITM Power)
15:10-15:30		Q&A	

WP4 – STAKEHOLDER ENGAGEMENT

Goal:

Achieving a key **stakeholder community** more likely to take-up the project results in core tasks (e.g. policy making / HRS development/component design) due to a progressively built **awareness, commitment, and ownership of project results**.

Targeted stakeholders:

- HRS operators
- HRS component manufacturers
- Public authorities
- Standards developing organizations

•	· 📘
	· 🛯
	· 📘
•	· 🛯

Communication:

- A series of **workshops** will be organised at strategic stages of the project
- The team informs at each stage of the process about the status
- Stakeholders become involved providing the team with comments in a **co-creation** perspective

WS #	Торіс	Planned Date
1	Validation of the 3 case study models defined in T3.1	June 2021
2	Validation of refined case study models and WP2 methodology	Dec 2021
3	Results from WP2 and WP3	Apr 2023
4	Development of the best practice guidelines	Jul 2023
Final	Adoption of best practice guidelines	Dec 2023

WP4 – WORKSHOPS LOGISTICS

Before the workshop:

- Targeted stakeholders will receive an invite before each workshop
- Preliminary documentation will be provided, together with the event's agenda

During the workshop:

- Project results so far will be presented
- Different formats can be chosen to collect stakeholders feedback (surveys, round tables, bilateral exchanges, etc)

After the workshop:

• Additional feedback or input may be asked after the workshop through questionnaires.

Event type: web conference (by default)

WP4 – HOW TO GET INVOLVED

Targeted stakeholders:

- HRS operators
- HRS component manufacturers
- Public authorities
- Standards developing organizations

Join the community:

- <u>info@multhyfuel.eu</u>
- Subject: "MultHyFuel stakeholder community"
- You will be added to the mailing list and be invited to the workshops specially targeted for you

Time	Subject		Speaker
14:00-14:10	FCH JU contribution		Enrique Giron (FCH 2 JU)
14:10-14:20	Introduction to MultHyFuel		Alexandru Floristean (HE)
14:20-14:25	State of the art review		Alexandru Floristean (HE)
14:25-14:35	From the risk assessment to the general best practice guidelines		Sebastien Quesnel (ENGIE)
14:35-14:45	Experimentation	Leakages, clouds and ignition	Christophe Proust (INERIS)
14:45-14:55		Fire and Explosion	David Torrado (HSE)
14:55-15:05	Key stakeholder engagement		Joana Fonseca (HE)
15:05-15:10	Dissemination of results		Nick Hart (ITM Power)
15:10-15:30	Q&A		

WP5 - DISSEMINATION, COMMUNICATION & EXPLOITATION

Public Dissemination

- Website <u>www.multhyfuel.eu</u>
 - Temporary website
 - Final website under development to include:
 - Summary of project
 - Public deliverables
 - News from project
 - Communication, dissemination and exploitation plan
- Contact email: <u>info@multhyfuel.eu</u>
- Follow-up webinars (details TBC)

- Targeted engagement with standardisation bodies, for example:
 - ISO/TC 197: Hydrogen Technologies
 - <u>CEN/CLC JTC 6: Hydrogen in Energy Systems</u>
 - CEN/CLC Sector Forum Gas Infrastructure: Mobility
 - recent work on preparing guidance for refuelling station standards from multifuel perspective
 - Others, as identified during project

Time	Subject		Speaker
14:00-14:10	FCH JU contribution		Enrique Giron (FCH 2 JU)
14:10-14:20	Introduction to MultHyFuel		Alexandru Floristean (HE)
14:20-14:25	State of the art review		Alexandru Floristean (HE)
14:25-14:35	From the risk assessment to the general best practice guidelines		Sebastien Quesnel (ENGIE)
14:35-14:45	Experimentation	Leakages, clouds and ignition	Christophe Proust (INERIS)
14:45-14:55		Fire and Explosion	David Torrado (HSE)
14:55-15:05	Key stakeholder engagement		Joana Fonseca (HE)
15:05-15:10	Dissemination of results		Nick Hart (ITM Power)
15:10-15:30	Q&A		

Thank you for your attention!

info@multhyfuel.eu

https://multhyfuel.eu/

MultHyFuel

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under Grant Agreement No 101006794. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe research.

